滤器是什么堵塞后,系统流量会变小吗

中央空调变流量系统节能要点

该系统是对制冷机房的空调设备进行集中节能控制是一套完整的节能控制系统。采用模糊控制和变频技术主要由变流量控制器将定流量系统转变为变流量控制系统。

中央空调变流量控制系统节能方法

变流量控制器设定冷冻水供、回水温度为某一特定值冷水机组控制冷冻沝供水温度为该相应值,变流量控制器根据回水温度控制冷冻水泵的转速凋整冷冻水流量。

变流量控制器设定冷冻水供、回水温度为某┅特定值(即供、回水温差为特定值)变流量控制器根据供、回水温度和温差,控制冷冻水泵的转速调整冷却水流量。

变流量控制器将冷卻水回水温度设定在某一特定值变流量控制器根据进水温度变化,控制冷却塔风机的转速使冷却水的进水温度保持在设定值上。

       中央控制系统实现对系统的参数进行优化没置监测系统的运行状态,统一协调各子系统的控制提供系统运行管理的各项功能,见中央空調变流量控制系统图(如下图所示)

       中央控制系统对冷水机组一般只监测不控制在冷水机组开放通信协议时,可以实现启停控制并鈳根据空调系统的运行状态和控制模式的要求对冷水机组的参数进行优化设置。

??对于有洁净要求同时还有温湿度及压差要求的房间茬围护结构上均要求密封性好,不产尘故围护结构隔热效果好,可认为属于空气调节的内区过渡季节亦需要供冷。空气处理的方式基夲上均采用组合式空气处理机组进行温湿度及洁净处理过程,按是否设置值班工况来区分:如不设值班工况则经过预先处理的新风与囙风混合,经过表冷/加热、加湿(冬季)、中效过滤处理后进入高效送风孔板或高效送风口送入室内;如设置值班工况则回风经热湿處理及中效后再与预处理新风混合后进入高效送风口或高效送风孔板送入室内;

对于内环境要求高的场合,空气处理机组要选择保温效果、密封性好的产品保证漏风率在百级、千级为1%以下,其余为2%以下;空气处理机组在设计时应考虑在近似干工况条件下运行为佳空气湿喥的处理由预处理新风机组来完成,在选型时要求增大新风机组的盘管排数使新风机组机器露点降低,以达到更好的除湿效果同时设加湿器用于冬季加湿。为了维护机组在额定风量下运行机组应配置变频器;机组内风机、电机、轴承.加湿器宜采用合资以上产品;为哽好地进行管理,机组宜接入BA系统或设置独立的系统进行控制

相对于洁净房间的冷热源选择

??针对采用洁净技术的房间,因为其密闭性好外围护结构对室内影响较小,加之人员、照明、及设备的散热与其他普通空调房间的空调需求不同,过渡季节均需要供冷这就對其冷热源的选择提出了要求,大楼普通中央空调不能完全满足其要求在设计选型时,需考虑其特殊要求进行配置 现通用的主要设计方法有:

       夏季采用大楼冷冻机房提供7度冷水,冬季供热站提供60度热水达到平时空调季节要求另配置风冷螺杆式热泵机组或模块式热泵機组满足过渡季节和夜间冷冻机房不运行时空调要求,用电动阀进行切换;

       由大楼冷冻机房和换热站提供空调季节冷热水供应另要求涳气处理机组配置直膨式冷热盘管段以作备用,也可采用一拖一或一拖多变冷媒空调来实现冷热源供给以作备用

从实践来看,三种方式均能满足洁净场所空调处理的要求相对而言,前二者处理方法能达到的温湿度控制精度高但投资较大,运行不灵活在部分房间运行時,能耗较大;第三种方法相对前二者而言能达到的温湿度精度较差,但运行灵活在夜间等部分负荷时运行方便、节能,需考虑室外機放置位置

温湿度独立控制空调系统介绍

从热舒适与健康出发,要求对室内温湿度进行全面控制夏季人体舒适区为25?C,相对湿度60%此時露点温度为16.6?C。空调排热排湿的任务可以看成是从25?C 环境中向外界抽取热量在16.6?C的露点温度的环境下向外界抽取水分。空调方式的排熱排湿都是通过空气冷却器对空气进行冷却和冷凝除湿再将冷却干燥的空气送入室内,实现排热排湿的目的现有的热湿联合处理的空調方式存在如下。

由于采用冷凝除湿排除室内余湿冷源的温度需要低于室内空气的露点温度,考虑传热温差与介质输送温差实现16.6?C的露点温度需要约7?C的冷源温度,这是现有空调系统采用5~7?C的冷冻水、房间空调器中直接蒸发器的冷媒蒸发温度也多在5?C的原因在空调系統中,占总负荷一半以上的显热负荷部分本可以采用高温冷源排走的热量却与除湿一起共用5~7?C的低温冷源进行处理,造成能量利用品位仩的浪费而且,经过冷凝除湿后的空气虽然湿度(含湿量)满足要求但温度过低,有时还需要再热造成了能源的进一步浪费与损失。

通过冷凝方式对空气进行冷却和除湿其吸收的显热与潜热比只能在一定的范围内变化,而建筑物实际需要的热湿比却在较大的范围内變化一般是牺牲对湿度的控制,通过仅满足室内温度的要求来妥协造成室内相对湿度过高或过低的现象。过高的结果是不舒适进而降低室温设定值,通过降低室温来改善热舒适造成能耗不必要的增加;相对湿度过低也将导致由于与室外的焓差增加使处理室外新风的能耗增加。

大多数空调依靠空气通过冷表面对空气进行降温除湿这就导致冷表面成为潮湿表面甚至产生积水,空调停机后这样的潮湿表媔就成为霉菌繁殖的最好场所空调系统繁殖和传播霉菌成为空调可能引起健康问题的主要原因。另外目前我国大多数城市的主要污染粅仍是可吸入颗粒物,因此有效过滤空调系统引入的室外空气是维持室内健康环境的重要问题然而过滤器是什么内必然是粉尘聚集处,洳果再漂溅过一些冷凝水则也成为各种微生物繁殖的最好场所。频繁清洗过滤器是什么既不现实也不是根本的解决方案。

为排除足够嘚余热余湿同时又不使送风温度过低就要求有较大的循环通风量。例如每平方米建筑面积如果有80 W/m2显热需要排除房间设定温度为25?C,当送风温度为15?C时所要求循环风量为24 m3/hr/m2,这就往往造成室内很大的空气流动使居住者产生不适的吹风感。为减少这种吹风感就要通过改進送风口的位置和形式来改善室内气流组织。这往往要在室内布置风道从而降低室内净高或加大楼层间距。很大的通风量还极容易引起涳气噪声并且很难有效消除。在冬季为了避免吹风感,即使安装了空调系统也往往不使用热风,而通过另外的暖气系统通过采暖散熱器供热这样就导致室内重复安装两套环境控制系统,分别供冬夏使用

为了完成室内环境控制的任务就需要有输配系统,带走余热、餘湿、CO2、气味等在中央空调系统中,风机、水泵消耗了40~70%的整个空调系统的电耗在常规中央空调系统中,多采用全空气系统的形式所囿的冷量全部用空气来传送,导致输配效率很低

新的空调应该具备的特点为:

温湿度独立控制空调系统技术原理

空调系统承担着排除室內余热、余湿、CO2与异味的任务。表明:排除室内余热与排除CO2、异味所需要的新风量与变化趋势一致即可以通过新风同时满足排余湿、CO2与異味的要求,而排除室内余热的任务则通过其他的系统(独立的温度控制方式)实现由于无需承担除湿的任务,因而可用较高温度的冷源即可实现排除余热的控制任务对照前言中现有空调系统存在的问题,温湿度独立控制空调系统可能是一个有效的解决途径温湿度独竝控制空调系统中,采用温度与湿度两套独立的空调控制系统分别控制、调节室内的温度与湿度,从而避免了常规空调系统中热湿联合處理所带来的损失由于温度、湿度采用独立的控制系统,可以满足不同房间热湿比不断变化的要求克服了常规空调系统中难以同时满足温、湿度参数的要求,避免了室内湿度过高(或过低)的现象

温湿度独立控制空调系统的基本组成为:处理显热的系统与处理潜热的系统,两个系统独立调节分别控制室内的温度与湿度处理显热的系统包括:高温冷源、余热消除末端装置,采用水作为输送媒介由于除湿的任务由处理潜热的系统承担,因而显热系统的冷水供水温度不再是常规冷凝除湿空调系统中的7?C而是提高到18?C左右,从而为天然冷源的使用提供了条件即使采用机械制冷方式,制冷机的性能系数也有大幅度的提高余热消除末端装置可以采用辐射板、干式风机盘管等多种形式,由于供水的温度高于室内空气的露点温度因而不存在结露的危险。处理潜热的系统同时承担去除室内CO2、异味,以保证室内空气质量的任务此系统由新风处理机组、送风末端装置组成,采用新风作为能量输送的媒介在处理潜热的系统中,由于不需要处悝温度因而湿度的处理可能有新的节能高效。

在温湿度独立控制空调系统中采用新风承担排除室内余湿、CO2、室内异味,保证室内空气質量的任务一般来说,这些排湿排有害气体的负荷仅随室内人员数量而变化,因此可采用变风量方式根据室内空气的湿度或CO2浓度调節风量。

由于仅是为了满足新风和湿度的要求如果人均风量40 m3/hr,每人5平方米面积则换气次数只在2~3次/hr,远小于变风量系统的风量这部分涳气可通过置换送风的方式从下侧或地面送出,也可采用个性化送风方式直接将新风送入人体活动区而室内的显热则通过另外的系统来排除(或补充)。由于这时只需要排除显热就可以用较高温度的冷源通过辐射、对流等多种方式实现。

当室内设定温度为25℃时采用屋頂或垂直表面辐射方式,即使平均冷水温度为20℃每平米辐射表面仍可排除显热40 W/m2,已基本可满足多数类型建筑排除围护结构和室内设备发熱量的要求由于水温一直高于室内露点温度,因此不存在结露的危险和排凝水的要求此外,还可以采用干式风机盘管通入高温冷水排除显热由于不存在凝水问题,干式风机盘管可采用完全不同的结构和安装方式这可使风机盘管成本和安装费大幅度降低,并且不再占鼡吊顶空间这种末端方式在冬季可完全不改变新风送风参数,仍由其承担室内湿度和CO2的控制

辐射板或干式风机盘管则通入热水,变供冷为供热继续维持室温。与变风量系统相比这种系统实现了室内温度和湿度的分别控制。尤其实现了新风量随人员数量同步增减从洏避免了变风量系统冬季人员增加,热负荷降低新风量也随之降低的问题。与目前的风机盘管加新风方式比较免去了凝水盘和凝水排除系统。彻底消除了实际工程中经常出现问题的这一隐患同时由于不再存在潮湿表面,根除了滋生霉菌的温床可有效改善室内空气品質。由于室内相对湿度可一直维持在60%以下较高的室温(26℃)就可以达到热舒适要求。这就避免了由于相对湿度太高只得把室温降低(甚至到20℃),以维持舒适要求的问题既降低了运行能耗,还减少了由于室内外温差过大造成的热冲击对健康的危害

温湿度独立控制空調系统中,需要新风处理机组提供干燥的室外新风以满足排湿、排CO2、排味和提供新鲜空气的需求。前言已阐述了现有的低温露点除湿的熱湿联合处理方式所带来的如何采用其他的处理方式排除室内的余湿,如何处理出非露点的送风参数如何实现对新风有效的湿度控制昰新风处理机组所面临的关键。

采用转轮除湿方式是一种可能的解决途径。用硅胶、分子筛等吸湿材料附着于轻质骨料制作的转轮表面待除湿的空气通过转轮的一部分表面,空气中的部分水分被吸附于表面吸湿材料实现除湿。吸了水的转轮部分旋转到另一侧与加热的洅生空气接触放出水分,使表面吸湿材料再生再进行下一个循环。吸湿过程接近等焓过程减湿加热后的空气可进一步通过高温冷源(18℃)冷却降温,从而实现温度与湿度的独立控制但转轮除湿的运行能耗难以与冷凝除湿方式抗衡。从热能利用效率看转轮除湿机除掉的潜热量与耗热量之比一般难以超过0.6,同时高温冷源还要提供1.1~1.2倍于空气除热总量的冷量这样就无法与采用低温热源(约90℃)、COP可达0.7,冷却温度可达30℃的吸收制冷机相比即使采用多级热回收方式,热能利用效率仍难以提高到与吸收制冷机抗衡此外,还有转轮的除湿空氣与再生空气间的渗透问题这似乎是很难解决的工艺问题。转轮除湿机热能利用效率低的实质是除湿与再生这两个过程都是等焓过程而非等温过程转轮表面与空气间的湿度差和温度差都很不均匀,造成很大的不可逆损失这可能是由转轮结构本身决定的很难克服的缺陷。

再一种除湿方式是空气直接与具有吸湿的盐溶液接触(如溴化锂溶液、氯化锂溶液等)空气中的水蒸气被盐溶液吸收,从而实现空气嘚除湿吸湿后的盐溶液需要浓缩再生才能重新使用。因此溶液式除湿与转轮式除湿机理相同,仅由吸湿溶液代替了固体转轮由于可鉯改变溶液的浓度、温度和气液比,因此与转轮相比这一方式还可实现对空气的加热、加湿、降温、除湿等各种处理过程。改善吸湿式涳气处理方式的关键就是变等焓过程为等温过程吸收或补充空气与吸湿介质间传质产生的相变潜热,从而减少这一过程的不可逆损失甴于转轮是运动部件,很难在转轮内部接入能够吸收热量或提供热量的换热装置这种实现起来在工艺上有很大困难。采用溶液吸湿可鉯使空气溶液接触表面同时作为换热表面,在表面的另一侧接入冷水或热水实现吸收或补充相变热的目的,从而实现接近等温的吸湿和洅生过程;还可以采用带有中间换热器的溶液空气热湿交换单元由溶液泵作为动力使溶液循环喷洒在塔板上与空气进行湿交换,同时溶液的循环回路中还串联一个中间换热器吸收湿交换过程中产生的热量或冷量。通过控制调节中间换热器另一侧的水温水量就可使空气茬接近等温状态下减湿或加湿。溶液和水之间是交叉流不可能实现真正的逆流,但如果单元内溶液的循环量足够大空气通过这样一个單元的湿度变化量又较小时,其不可逆损失可大大减少

热泵的制冷量用于降低除湿溶液的温度从而提高其除湿性能,热泵的排热量用于溶液的浓缩再生还有一种以热源作为驱动能源的溶液除湿新风处理系统,由再生器统一制备的浓溶液送入各个新风机组中利用溶液的吸湿性能实现新风的处理处理过程。溶液的蓄能密度很大(高于冰蓄冷)从而降低了对于持续热源的需求,除湿与再生可以分别运行甴于在除湿过程中,采用室内排风蒸发冷却等冷却手段可以降低对溶液浓度的要求,因此可以采用低品位的热能作为驱动能源如城市熱网的热水、热泵冷凝器的排热、热电联产系统的排热等等。溶液具有杀菌、除尘作用可以起到净化空气的作用。除了消除冷凝表面避免霉菌滋生外,采用溶液式空气处理方式还可以有效解决空气中可吸入颗粒物的消除使用溶液式空气处理方式,粉尘颗粒却可以被有效地带入溶液中通过合理的设计溶液与空气接触的塔板形式,就可在获得优良的传热传质效果的同时获得好的除尘效果溶液中的灰尘鈳通过溶液过滤器是什么捕捉收集,更换和清洗溶液过滤器是什么远比更换和清洗空气过滤器是什么容易对于大颗粒粉尘,进入溶液式涳气处理器后会导致堵塞因此应在入口安装粗效过滤器是什么进行捕捉收集。这一般比较容易并不易造成对空气的二次污染

由于潜热甴单独的新风处理系统承担,因而在温度控制(余热去除)系统中不再采用7?C的冷水同时满足降温与除湿的要求,而是采用约18?C的冷水即可满足降温要求此温度要求的冷水为很多天然冷源的使用提供了条件,如深井水、通过土壤源换热器获取冷水等深井回灌与土壤源換热器的冷水出水温度与使用地的年平均温度密切相关,我国很多地区可以直接利用该方式提供18?C冷水在某些干燥地区(如新疆等)通過直接蒸发或间接蒸发的获取18?C冷水。

即使采用机械制冷方式由于要求的压缩比很小,根据制冷卡诺循环可以得到制冷机的理想COP将有夶幅度提高。如果将蒸发温度从常规冷水机组的2~3?C提高到14~16?C当冷凝温度恒为40?C时,卡诺制冷机的COP将从7.2~7.5提高到11.0~12.0对于现有的压缩式制冷机、吸收式制冷机,怎样改进其结构形式使其在小压缩比时能获得较高的效率,则是对制冷机制造者提出的新课题三菱重工(MHI)微型离惢式高温冷水机组采用“双级压缩+器”的制冷循环形式和传热性能优异的高效传热管,优化设计离心式压缩机叶轮和轴承不仅突破了離心式冷水机组难以小型化的误区,而且还具有非常高的性能系数COP利用该微型离心式冷水机组制备高温冷水时的性能值。当冷冻水进、絀水温度为21/18?C、冷却水进、出水温度为37/32?C时其COP=7.1,在部分负荷条件下或冷却水温度降低时其性能则更为优越。

采用热电联产废热驱动的溶液除湿系统处理新风承担建筑的潜热负荷处理后的干燥新风通过置换通风方式与个性化送风方式送入室内;采用电动制冷机制备18?C冷沝去除建筑的显热负荷,冷水送入室内辐射板与干式风机盘管中

与普遍使用的风机盘管加新风方式或全空气方式相比,基于溶液除湿方式的温湿度独立控制系统的特点可如下:

       适应室内热湿比的变化温湿度独立控制系统分别控制房间的温度和湿度,能够满足建筑热湿仳随时间与使用情况的变化全面控制室内环境。并根据室内人员数量调节新风量因此可获得更好的室内环境控制效果和空气质量。

       末端方式不同可采用辐射式末端或者干式风机盘管吸收或提供显热,采用置换通风等方式送出干燥的新风去除显热冬夏共用同样的末端装置。

       不再需要低温冷冻水整个系统只需要18℃的冷水,这可通过多种低成本的和节能的方式提供降低了运行能耗。

采用溶液除湿方式处理新风可有效的控制室内湿度。溶液采用低温热量(60℃)驱动使利用城市热网夏季供应热量驱动空调,也可使制冷用热泵的热端排热得到应用同时,浓溶液还可以高密度蓄存从而使热量的使用与空调的使用不必同时发生。这对降低空调电耗改善城市能源供需结构,解决热电联产系统的负荷匹配问题都可起到重要作用

采用溶液吸湿完成空气除湿。无论在新风处理机还是风机盘管处都不存茬凝水,根除了霉菌军团菌等病菌的滋生条件,溶液本身具有杀菌除尘作用增强了系统健康安全性。采用溶液与空气直接接触由溶液捕捉空气中的可吸入颗粒物,再通过溶液过滤器是什么去除避免了中效过滤器是什么清洗,更换的一系列问题

加载中,请稍候......

}
  • 你的回答被采纳后将获得:
  • 系统獎励15(财富值+成长值)+难题奖励20(财富值+成长值)
采纳数:2 获赞数:5 LV2

压力变大 流量变小 堵塞 另推荐下,需要滤芯可以找广州宏多溢 出口嘚过滤效果不错 价格也不错

你对这个回答的评价是

}

我要回帖

更多关于 IVC滤器 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信