航空战斗机23航炮最佳联合攻击战斗机距离

国产航炮不得不说的故事-牛bb文章网
国产航炮不得不说的故事
所属栏目: &
飞机上使用的自动武器仍遵循传统的分类,即口径20毫米以下的称为机枪,20毫米以上(含20毫米)称为航炮或机炮。时至今日,制导武器的盛行并未使航空自动武器退出历史的舞台,只不过二战后各国战斗机普遍装备机炮来代替口径小、威力弱的机枪。正如黑格尔著名的“存在即合理”的论断,尽管八十多年风雨兼程,航炮的出场机会越来越少,它却了然筑起了战机飞行员生命最后的防线,英国皇家空军的一位“狂风”战机飞行员讲得好:“不管它能不能用得上,我永远不想丢掉航炮。”现今的航炮按结构和供能方式主要分四大类:管退式、气退式、转膛式、多管旋转式。苏联的飞机上多采用管、气退式航炮(比如著名的NR-30管退式和GSh-23气退式航炮),仅在苏-27、苏-30等先进飞机上装备了GSh-30-1单管转膛炮。而欧美等国则倾向于转膛或多管旋转式航炮(如英国的“阿登”单管内能转膛式和美国的M61A1多管旋转式航炮),由于我国受苏联体制的影响较大,大部分战机上都采用了管、气退式航炮,其中装备最多的当属30-1管退式航炮和23-3气退式航炮。30-1型航炮主要装备在歼7和部分歼8 I型上,23-3型航炮则装备在歼8 II、歼教7、歼轰7A“飞豹”和歼10上。宝刀不老的30-1型航炮30-1型航炮师承于著名的NR-30管退式航炮,其基本的工作原理是利用射击时产生的火药气体压力,一方面推动弹头向前,另一方面作用炮管机心匣后退和前冲。作为航炮的基本构件,机心匣在后退和前冲过程中,带动其它机构自动完成开膛、抽壳、装弹、送弹入膛、锁膛、打火等动作,实现自动连续射击。当然,在机心座撞击锁膛机打火时,由于反作用力的作用,会使它产生反跳,机心座反跳距离过大,就可能造成锁膛机旋转开膛。此时,因膛压过高,如果机心开膛,火药气体就会向后冲出,造成严重的炸膛事故。因而机心匣上都装有一反跳锁键,就是当机心座前冲一段距离后,锁键弹出,防止机心座反跳距离过大而造成开膛。1980年,我国空军某部队进行地靶实弹射击时就出现过炸膛事故。据飞行员事后回忆,“当飞机俯冲到距地面150米进行实弹射击时,突然一声巨响,能感到飞机和人好像翻了个儿一样,飞机开始剧烈抖动,空速表与动静压仪表全都不指示了,发动机仪表也来回晃动,温度直线上升,情况万分危急。”根据多年的经验,他判断这是炮弹在膛内爆炸,致使发动机受到严重损伤。最后查明的事故原因正是由于反跳锁键磨损过度,无法锁住机心,导致炸膛的发生。那么30-1型航炮是如何控制发射的呢?原来当飞行员按下航炮射击按钮时,通过一系列装置,使机心匣里的射击扣机收回,释放机心组,使航炮发射。至于航炮在按住射击按钮时,之所以能连续发射是由于射击扣机在连射中一直处于收起状态不能扣住机心,机心组才能不停地后退和前冲,完成连续射击。一旦松开射击按钮,射击扣机在弹簧的作用下向里弹出,扣住机心组,使其无法前冲,航炮自然就处于停射状态了。我们刚刚讨论了已装好弹的30-1型航炮连续射击和停射原理,那么航炮里的第一发炮弹是怎么装进炮膛里的呢?这就要利用到冷气装弹机构,简称装弹气压筒。它是利用冷气膨胀做功的原理,来推动炮管机心匣和机心组运动的,按下飞机上的装弹按钮后,冷气把炮管机心匣向后推到航炮的极限位置,使机心组被装弹扣机扣住;放开装弹按钮后,冷气又把炮管机心匣推到最前位置。炮管机心匣在后退和前冲的过程中,就操纵进弹机构拨动弹链将炮弹拉到位,并装入机心抓手,接着,装弹扣机提起,释放机心组。于是,机心组在复进簧作用下前冲,被射击扣机扣住。此时,冷气装弹完毕,航炮就处于待射状态。除了装弹以外,冷气装弹机构还可以用来排除故障,退弹以及平时检查武器工作的协调情况。由于30-1型航炮采用管退式原理,各部件问的碰撞使其极易磨损甚至产生裂纹,航炮的日常保养就显得十分重要。通常每隔一段时间,负责军械的机务官兵就要把航炮从飞机上卸下,将航炮分解,把零件用汽油逐个清洗后再涂上一层保护脂,以延长航炮的使用寿命。虽然30-1航炮的结构简单,装拆方便,便于维护,但因为后坐力较大,在连续射击时炮箱前后串动剧烈,导致进弹系统与输弹接口处的对准性较差,从而降低了进弹系统工作的可靠性。最直接的后果就是在连续射击时常常会出现“卡弹”的现象,整个航炮不得不停止工作。同时,由于炮管机心匣质量太大,运动灵活性差,与其它国家先进航炮相比,30-1航炮射速也偏低,每分钟不足1000发。加斯特原理下的23-3型航炮有一个提高射速的办法就是使两个平行的单管炮联动,其中一门的后坐过程带动另一门炮的复进过程,由此周而复始。这就是一战期间德国人发明的加斯特原理,可当时并未投入实用。直到二战后,苏联成为了利用加斯特原理最广泛的国家。部分米格-21以及米格-23机腹上装备的就是GSh-23-3型加斯特双管炮,甚至一些运输机尾部也装备它进行自我防护。GSh-23-3的两根炮管配两套纵向滑动式闭锁机构此前彼后地联动工作,通过上方机身内的弹箱供弹,在当时显得极为新颖和独特。正是看到了30-1型航炮的不足,我国在苏联GSh-23-3航炮的基础上仿制成功了23-3型气退式航炮。称之为“气退式”主要是因为该类武器的炮管和炮箱固连在一起,射击时炮管和炮箱没有相对运动,而是从炮管侧孔导出部分火炮气体,推动传动板向后运动,带动其它机构工作;当传动板后退终止,又在复进簧作用下前冲,完成连续射击动作。与GSh-23-3航炮类似,23-3型航炮的两根炮管也各配有一套互相联动的滑板――闭锁机构,而全炮的其它机构则共用一套,如进弹机构,充弹机构,击发机构等。在滑板的带动下,完成一系列的自动循环工作,使左右炮管连续不断的交替射击。由于23-3型航炮炮管和炮箱没有相对运动,而火药气体作用在弹壳底部上的力,通过机心直接传给炮箱,为了减少炮架(飞机)所承受的后坐力,该炮在炮箱尾部安装有缓冲减震器。与30-1型航炮只能通过冷气装添首发炮弹不同的是,23-3型航炮采用了火药充弹机构来完成装、退弹动作。火药充弹是通过装在火药弹室里的火药弹来完成的。当按下装弹按钮后,使一枚火药弹击发,产生的火药气体推开火药弹室的气阀进入瓦斯简体,并推动充弹活塞向后运动,同时带动与它相连的滑板向后运动,滑板后退时则可操纵上面的压弹机构,把炮弹从弹带压到炮膛的轴线上。不过在地面上,为了节约火药弹和保证航炮的使用寿命,很少使用火药充弹机构进行装弹和退弹,通常是由军械人员手工进行第一次装弹(使一侧炮管的炮弹入膛),由飞行员在空中用火药弹进行第二次装弹,来完成装弹工作。23-3型航炮采用火药充弹改变了30-1型航炮等长期沿用的冷气装弹的方法,因而,使结构大为简化,同时不再需要提供气瓶,管道等设备,减轻了飞机的载荷,也节约了飞机的能源消耗。由于其体积较小,同时相比于30-1型航炮没有专门的弹仓,航炮弹链只能沿炮身环绕,23-3型航炮一般都有专门的弹箱,弹链在弹箱内紧密排列,这样就节约了不少空间,也很容易实现外挂的装机方案。采用加斯特原理制成的双管23-3型航炮射速虽然比30-1型单管航炮成倍的提高,但体积和质量却减去了不少,加之其工作可靠性较高,满足实战需求,因此,其综合性能不错,且在飞机上布置方便。我国不少二代改型机和大多数三代机都是装备了此种航炮。然而,“鱼和熊掌不能兼得”,由于该炮选用了航23-2型炮弹,虽然通用性好,但初速偏低,有效射程较小。此外,该炮零部件较多,形状复杂,工艺性较差,因而研制和生产的费用也要高些。飞翔的弹丸“巧妇难为无米之炊”,有了优秀的战机飞行员和性能优良的航炮,还要有造成杀伤力的关键――炮弹。为了适应作战和训练的需要,30-1型航炮通常使用的炮弹有以下五种:杀伤爆破燃烧弹(简称杀爆燃弹,标记红头红腰);杀伤爆破燃烧曳光弹(简称杀爆燃曳弹,标记红头绿腰);穿甲爆破弹(简称穿爆弹,标记红色环带);空中打靶训练弹(简称航训弹,标记红头蓝腰);地面校靶和试射校靶弹(简称航校弹,标记白头白腰)。23-3型航炮弹药与此类似,功能大同小异。值得注意的是根据不同的任务,炮弹在弹链上的排列顺序是不一样的,并不是整个弹链只使用一种炮弹。比如,30-1型航炮夜间打靶训练中通常采取的方法是将杀爆燃曳弹与杀爆燃弹或穿爆弹间隔混装(如每5枚炮弹中混装一枚杀爆燃曳弹),燃曳弹中的曳光剂可以显示弹道,利于飞行员射击时的修正。校靶与实弹演练航炮与瞄准具分别安装在飞机上并相隔一定距离(比如歼7B型飞机两门30-1型航炮分别位于机腹左右两侧),为使瞄准后武器发射的弹丸能准确命中目标,就要求瞄准具的瞄准轴线与武器身轴线有正确的配合,也就是让瞄准具的光环中心线和航炮轴线相互平行,这主要依靠地面校靶来实现。而地面较靶又分为冷校靶和热校靶。冷校靶也称仪器较靶,作为一名航空机务干部,笔者有幸参与过。首先用千斤顶顶起飞机,并将飞机调平,然后把绘有飞机轴线,武器轴线,瞄准具光环中心点的标准靶图放置在飞机前方一定位置的靶板上。借助校靶镜调整航炮,使其轴线对准校靶图上的相应点。同时调整瞄准具,也使其中心点与靶图上的相应点重合,最后固紧各机构。由于冷校靶仅通过仪器进行,不能反映实弹射击情况,不能确保武器的射击精度,所以冷校靶一般只作为热校靶的预校。热校靶是通过实弹射击(利用校靶弹)方法调整武器安装位置,也就是通过试射使着弹点中心与靶图上规定的理论着弹点相一致。听一位机务战友讲述,“30-1型航炮在热校靶时声响巨大,可能是采用了管退式工作原理,运动件速度高,导致试炮时零件所受的撞击力极大。加上发射药的爆炸声,极其震撼。”航炮经过热校靶之后,一般就要进行真正的实弹演练了,主要包括地靶射击和空靶射击,由于实弹演练的机会难得,因而,无论是飞行人员还是地勤人员个个都会悉心准备,跃跃欲试。航炮地靶射击的地靶一般是一个直径15~20米的圆圈,内有三个环,按照规定,越能命中里面的环,成绩也就越高。地靶射击时,飞行员首先驾机平飞,进入一定距离后开始俯冲,此刻就可以捕捉靶标了。对于装备光学瞄准具的飞机来说,飞行员要做的就是操纵飞机把射击光环始终稳稳的套在靶标上,当光环大小和三环靶标的大小一样时,就是射击距离1000(假设飞行员把瞄准具射击直径放在15米,射击距离放在1000米),此刻飞行员即可扣动扳机射击,然后迅速拉杆退出。听部队的战友们讲,由于射速较快,从地面上看去,只是机头火光一闪,至于空中射击的声音,也很难分清点数,只是零点几秒的“咚咚”声。不过机炮炮弹击中地面的爆炸声却清脆响亮,弹着点尘土飞扬。虽然打靶场景蔚为壮观,但地靶训练还是存在着一定的危险性,除了前面提到的偶发性炸膛事故,对于歼7飞机而言,地靶射击(也包括空靶射击)时航炮排出的高温废气有可能从航炮上方的辅助进气门进入进气道,从而引起发动机喘振停车。所以一般规定,飞机在进行航炮射击时,不能小于规定真速,也就是确保辅助气门关闭。相比于地靶训练,航炮打空靶训练更是提高部队战斗力的有效方法,各国空军都很重视打空靶训练。因三叶靶的稳定性较好、飞行中空气阻力相对较小以及经济因素等多方面的考虑,目前在我国此靶的使用频率较高。三叶靶标本身没有动力,自身不能到空中飞行。靶标要上天,需要飞机拖才能实现。拖靶标的钢丝绳一般是300~400米。也就是说拖靶飞机和靶标的距离也是300米。因而,空靶射击对拖靶飞机的威胁很大,稍有不慎,就有可能误伤拖靶飞机,所以对双方飞行员的素质都是一个严峻的考验。经验证明,歼击机对空靶射击,最有利的进入角(即攻击机纵轴和靶标纵轴问的夹角)应在15度至25度之间,在这个角度范围内射击,既可保证拖靶机的安全,又有利于跟踪瞄准射击。“拆装炮”比赛航炮作为战斗机武器系统的一个组成部分,它的维护好坏在战时具有十分重要的意义。在平时的飞行训练中,除了地靶攻击科目和空靶射击等科目训练外,航炮使用的频率不是很高。军械专业的官兵则把拆装航炮作为提高维护质量的大事来抓,经常开展拆装航炮比武。可别小看了拆装航炮这门技术,这通常是机务军械人员进行岗位练兵比武的“看家本领”:一门航炮几十千克重,在比赛中通常由一名军械人员来完成,不仅要比速度,更要比力道,比协调,原因是航炮要全部分解后才能按顺序重新安装,在分解的过程中要不时翻动航炮的方向位置才能分解完毕,没有足够的力道和协调性,要达到快速就成了纸上谈兵。笔者亲眼见过,一个经验丰富的军械师傅在不到两分钟的时间里,把重达60多千克的30-1型航炮完整的分解并组装起来。欢迎您转载分享:
更多精彩:武器分析20mm和23mm航炮各有何优劣
作者:圣德尔塔 来源:新浪 发布时间:11-13
  本文为巴士论坛网友转载,原作者 圣德尔塔 ,可到论坛短消息
领取奖励。  原
创、转载均有稿酬,首发、独家更有丰富奖励![]、[]、[]
  要想分析航炮的好坏,必须同时考虑弹和炮两个方面。
  弹药方面在同弹种(穿甲燃烧弹API、高爆燃烧弹HEI)条件下美国20mm航炮使用的20x102mm弹威力要略小于苏联的23x115mm弹,但是美国航炮使用的新型弹种,弥补了其口径较小的缺陷。1988年前后,PGU-28/B开始作为美国空军和海军的标准弹药。PGU-28/B是设计用来增加炮口初速的低阻弹药,其炮口初速提高到1050米/秒。它也是一种半穿甲高爆燃烧弹,较老式的M56A3穿甲燃烧弹显著提高了射程、精度和威力。
  而航炮方面,美国主要是M39转膛炮和M61转管炮,射速较高;苏联主要是NR-23、NS-23、AM-23、GSh-23、GSh-6-23,除最后两种外,射速都要低一些。我国使用的23mm航炮基本上是仿造苏联的,而苏联伊尔-2攻击机上的VYa航炮使用的是23X152mm弹药,用后来战斗机、轰炸机上的23mm炮不同,在这里就不作考虑了。
  航炮具体分析如下:
  美国M39航炮
  邦提埃克(Pontiac)M39是美国空军于20世纪40年代末开发的一种单管转膛炮,主要用于50年代初到80年代的一系列战机上。M39由斯普林菲尔德兵工厂,基于二战期间德国毛瑟MG213航炮研制。其设计也影响了英国阿登和法国德发航炮,但是美国设计者使用了更小的20毫米口径以牺牲侵彻力为代价,提高了射速和炮口初速。
  这种新型航炮最初被命名为T-160,在Gunval计划下在1952年末装到F-86战斗机上进行战斗测试,并于1953年初参加了朝鲜战场的行动。最终其成为F-86H战斗轰炸机,F-100超佩刀、F-101A/C巫毒、F-5自由战士战斗机的标准武备,现在F-5虎II战斗机仍然在使用M39A2航炮。
  性能参数:
  自动方式:五药室转膛炮
  重量:81千克
  射速:1500发/分
  炮口初速:1030米/秒
  弹头重:101克
与航空武器,战机历史相关的文章
战机世界视频
战机世界攻略
战机世界图片国产多款航空机炮23mm、30mm现役弹药,很清晰!!
共 30943 浏览 17 回帖&&
积分: 1271
发帖: 394 篇
在线时长: 66 小时
国产多款航空机炮23mm、30mm现役弹药,很清晰!!
弹壳上已经标有炮弹口径与弹种,在此不再赘言~
恭喜!本帖被【
' + newItem.onLineCount+ '' + newItem.name + '';
NTES.ajax.importJs(url, function() {
var len = hotLive.
if (hotLive != '' && len != 0){
for (var i = 0; i < len-1; i++) {
var boboItem = hotLive[i],
isLive = boboItem.live,
liveHref = isLive ? boboItem.liveUrl + boboStatTag : "/" + boboStatTag,
boboLiveStat = isLive ? '' : '',
boboHtml = '';
html += boboH
if(i === 0){
html += newH
NTES(".bobo-list").attr("innerHTML", function() {
return this.innerHTML +
}, "utf-8");
}, "utf-8");
发帖: 9 篇
在线时长: 1 小时
就两个子弹你拍了八次!!
发帖: 77 篇
在线时长: 70 小时
发帖: 1 篇
在线时长: 1 小时
【回复 2楼 zgsbya 】:
就两个子弹你拍了八次!!
------------------------------------------------------------------
第一张、第二张、第三张,都是不同的炮弹。
发帖: 178 篇
在线时长: 8 小时
好蛋蛋,哈哈
网易论坛,天天相伴
发帖: 15 篇
在线时长: 4 小时
现在航炮的作用有待人们在实战中检验,可能在超视距的今天,它会退出历史的舞台
网易论坛,天天相伴
自恋,感觉很胖,很美
发帖: 1 篇
在线时长: 0 小时
落伍了,单又不能少,先留作
积分: 3586
发帖: 231 篇
在线时长: 25 小时
现在还有多少飞机留这玩意哦!
发帖: 77 篇
在线时长: 75 小时
【回复 8楼 wangqing.251 】:
现在还有多少飞机留这玩意哦!
------------------------------------------------------------------
不好意思,现在最先进的F22战斗机上也有机炮
发帖: 1 篇
在线时长: 0 小时
发帖: 1 篇
在线时长: 0 小时
【回复 7楼 wjsczdbzzd 】:
落伍了,单又不能少,先留作
------------------------------------------------------------------
你怎么身穿着有美国国旗标志的衣服拿的是我国九五步枪,你哪国的兵啊
发帖: 127 篇
在线时长: 14 小时
【回复 8楼 wangqing.251 】:
[i]现在还有多少飞机留这玩意
------------------------------------------------------------------
天知!!!
发帖: 127 篇
在线时长: 14 小时
【回复 11楼 lianyiguang 】:
【回复 7楼 wjsczdbzzd 】: [i]落伍了,单又不能少,先留作
------------------------------------------------------------------
你怎么身穿着有美国国旗标志的衣服拿的是我国九五步枪,你哪国的兵啊[/i]
------------------------------------------------------------------
“美”军特战队!用美人计的!不靠枪!
积分: 1351
发帖: 473 篇
在线时长: 158 小时
ddddddddddd
发帖: 46 篇
在线时长: 3 小时
发帖: 77 篇
在线时长: 80 小时
【回复 11楼 lianyiguang 】:
【回复 7楼 wjsczdbzzd 】: [i]落伍了,单又不能少,先留作
------------------------------------------------------------------
你怎么身穿着有美国国旗标志的衣服拿的是我国九五步枪,你哪国的兵啊[/i]
------------------------------------------------------------------
作秀的...美军军服哪有这种质地和迷彩...上边印个US,加个美国国旗LOGO就在装13了
发帖: 1 篇
在线时长: 0 小时
【回复 7楼 wjsczdbzzd 】:
落伍了,单又不能少,先留作
------------------------------------------------------------------
七楼楼主不管这个女的是你女朋友也好.是也老妈也罢...学USA你也学的像一点...拿个中国的步枪,穿个印有美军标示的衣服,干啥呢&&&&别让人以为是咱中国的叛徒,还有下次学的时候含蓄点,内裤都露出来了,不知道是故意还是不知道......
发帖: 17 篇
在线时长: 1 小时
借题发挥以下:23-2航炮的燃烧弹和穿甲弹
30-2航炮,本人玩过4年的23-2航炮。
下次自动登录
每30秒自动保存一次内容
我眼中的似水流年作品征集
24小时热帖榜
下次自动登录YF-23战机终极解读 败者为王:诺斯罗普 :: 空军世界
败者为王:诺斯罗普YF-23战机终极解读
YF-23A展现了与全完不同的设计概念,也体现了诺斯罗普/麦道设计团队对未来空战要求的理解。 总体布局YF-23A的总体布局在很大程度上继承了诺斯罗普概念设计方案的特点。其菱形机翼+V形尾翼的布局,介于传统正常布局和尢尾布局之间。单座,双发,中单翼,腹部进气。和YF-22A一样,YF-23A最终并没有采用一度呼声颇高的鸭式布局。
事实上从七家公司的方案无一采用鸭式布局这点上就能看出美国人的倾向了。在一定程度上,这是受了几年前七巨头讨沦会上通用动力的影响――哈瑞-希尔莱克说“鸭翼最好的位置是在别人的飞机上。”
热门作战飞机:
笔者在《王者之翼》中曾提到过,拒绝鸭式布局的原因之一是配平问题。如果按照能够进行有效的俯仰控制原则水设计鸭翼,那么鸭翼就无法配平机翼增升装置产生的巨大低头力矩。如果需要配平增升装置,那么鸭翼必须增大,对机翼的下洗也随之增大,反过来削弱了增升效果。而且为了防止深失速,可能还需要增加平尾。另一方面,从跨音速面积律来说,大鸭翼很难满足跨音速面积律的要求,增大了机身设计难度和超音速阻力――这对于强调超巡的ATF(特别是YF-23A)来说,尤其难以接受。而拒绝鸭式布局的另一个重要原因是隐身问题。鸭翼的位置、大小、平面形状很难和隐身要求统一起来。
隐身设计的一个重要原则是尽昔减少(但不可避免)机体表面(特别是迎头方向)的不连续处,而鸭翼恰恰难以做剑这一点。如果还希望把机翼前后缘对应的主波束数量减至最少(也就是前后缘平行),将带来更大的设计困难。虽然根据美国空军的要求,ATF必然兼顾隐身和机动性,但各个公司设计思想不同,飞机性能偏重也必然不同。从YF-23A最终选择了V形尾翼而非传统四尾翼布局来看,诺斯罗普追求隐身的意图相当明显,他们的的设计可大大减小飞机的侧面雷达反射截面积。由于减少一对尾翼,飞机重量和阻力也可减小,对于提高超巡能力也有助益。但随之而来的是操纵面的效率问题和飞控系统的复杂化。
机身 为满足“跨战区航程”的要求,ATF必须有足够大的载油量而考虑到隐身要求(飞机不能外挂副油箱),所有燃油必须由机内油箱装载。因此无论是YF-22A还是YF-23A,都必须提供足够的机内容积――几乎相当于F-15的两倍!从机体尺寸来看,YF-23A机身长度增加明显,但仍然有限,因此其机内容积增大必然主要来自飞机横截而积的增大。如果从跨/超音速阻力方面来考虑,飞机横截面积增大不利于按照跨音速面积律来设计飞机。适当地拉长机身,有助于平滑飞机的纵向横截面积分布,减小跨/超音速阻力。但机身加长,必然导致飞机纵向转动惯性增大,这对于提高飞机敏捷性和精确控制能力是不利的。的机身长度和YF-23A相近,有飞过苏-27的飞行员说,该机操纵惯性较大,并不是那么好飞。
事实上,仅仅从机身设计的特点我们就可看到YF-23A和YF-22A在设计思想方面的差异。从机内载油量来看,YF-23A载油10.9吨,YF-22A载油11.35吨,考虑到机内弹舱设计载弹量相同(之所以说设计,是因为YF-23A的格斗弹舱还停留在图纸上),那么YF-23A的机内容积不会大于YF-22A。而YF-23A的机身长度却明显长于YF-22A(后者由于尾撑和平尾的原因,实际机身长度从有18米多),这意味着即使在飞机最大横截面积相当的情况下,YF-23A也可以获得更平滑的横截面积分布(也就是更小的跨/超音速阻力),当然也获得了更大的纵向转动惯量。不难看出,为了解决横截面积增大带来的阻力问题,YF-23A和YF-22A的选择截然相反,前者选择了速度性能而牺牲了敏捷性和精确控制能力。这也在一定程度上反映了两大集团对未来战斗机的定位。
在外观上,YF-23A的机身颇有些洛克希德黑鸟的风格,看上去就像把前机身和两个分离的发动机舱直接嵌到一个整体机翼上一样。前机身内主要设置雷达舱、座舱、前起落架舱、航电设备舱和导弹舱。前机身前段横截面近似一个上下对称的圆角六边形,然后逐步过渡到圆形潢截面,最后在机身中段与机翼完全融合。后面的进气道和发动机舱横截面仍是梯形,并以非常平滑的曲线过渡到机翼或后机身的“海狸尾巴”,这有助于减小相互之间的干扰阻力。前面提到过,空军取消了采用反推装置的要求,而诺斯罗普并未修改设讣,在后机身形成非常明显的“沟槽”,带来不必要的阻力增量。
边条 边条翼布局在大迎角时比鸭式布局的升力特性有更大优势――这是影响诺斯罗普选择YF-23A整体布局的因素之一。就传统边条而言,其展长的增大(面积也增大)对提高大迎角时的升力有明显好处。但展长越大,大迎角下产生的上仰力矩也越大;成为制约边条大小的一个因素。但显然YF-23A的边条不同于三代机上的传统边条。其三段直线式窄边条设计相当有特点,从机翼前缘一直向前延伸到雷达罩顶端。这种边条倒是和YF-22A的边条颇为类似。YF-23A的边条具有以下几个功能:产生边条涡,在机翼上诱导出涡升力,改善机翼升力特性;利用边条涡为机翼上表面附面层补充能量,推迟机翼失速;起到气动“翼刀”的作用,阻止附面层向翼尖堆积,推迟翼尖气流分离(事实上由于YF-23A机翼根梢比很大,高速或大迎角下可能会有明显的翼尖分离趋势);大迎角下机头涡的分离,提供更好的俯仰和方向稳定性――直到第三代超音速战斗机,大迎角下机头涡不对称分离的问题仍未解决,这是限制飞机进入过失速领域的一个重要因素。
但如果从传统观点来看,YF-23A的边条太小,能否产生足够强的涡流,起到应有的作用还是个疑问。如果确实可以,那么一种可能性就是该机边条的作用原理有别干传统边条,另一种可能就是还有其它的辅助措施来协助改善机翼升力特性。有资料提及,“机头和内侧机翼所产牛的涡流对尾翼没有什么影响”,这可能意味着YF-23A机翼内侧可能有某种措施以产生涡流,起到和边条涡类似的作用。在YF-22A的进气道顶部各有两块控制板,用于控制机翼上表面的涡流。
YF-23A可能也有类似设计――其机翼内侧有进气道附面层的放气狭缝,不排除附面层气流经过加速后由此排出,借以改善机翼上表面气流状态的可能性。机翼巨大的菱形机翼可以算是YF-23A最突出的外形特征之一。机翼前缘后掠40度,后缘前掠40度,下反角2度,翼面积88.26平方米,展弦比2.0,根梢比高达12.2。诺斯罗普之所以选择这样一个占怿的机翼平面形状,最重要的影响因素就是隐身。YF-23A的隐身技术继承自B-2,两者有类同之处――其中之一就是X形的四波瓣反射特征。要实现四波瓣反射,机翼前后缘在水平面内必须平行。这样一来,诺斯岁普没有更多的选择:要么采用后缘后掠设计,形成后掠梯形翼,基本类似B-2的机翼;要么采用后缘前掠设计,形成对称菱形翼。采用后掠梯形翼,好处是后掠角选择限制较小,可以根据需要进行优化;但和三角其相比,缺点也很明显:结构效率较低;内部容积较小,对于要求跨战区航程的ATF而言影响尤大;气动弹性发散问题较明显;机翼相对厚度的选择受限制,不利于选择较小的相对厚度来减小超音速阻力。如果选择后缘前掠设计,当机翼前缘后掠角(后缘前掠角)较小时,这种机翼更接近于诺斯罗普惯用的小后掠角薄机翼(典型的如、),所面临的问题则和后掠梯形翼相同――超凡的续航能力和优良的超音速性能是这种机翼难以解决的巨大矛盾。而采用大后掠角的对称菱形翼,在隐身上是有利的――F-117采用高达66.7度的后掠角,就是为了将雷达波大幅偏转出去――但气动方面的限制已经否决了这种可能性:展弦比太小,气动效率极低,这种飞机造出来能不能飞都是个问题。而且后缘前掠角太大,将使得机翼后缘的增升/操纵装置的效率急剧降低直至不可接受。
综合权衡之下,只有采用中等后掠角的对称菱形翼,才能在隐身、续航、气动等诸方面取得令人较为满意的平衡点。至于为什么恰好选定40度后掠角,笔者认为,在其它条件基本得到满足的情况下,优化边条涡的有利干扰应该是影响因素之一。不过,既便如此,40度的后缘前掠角也严重影响了机翼后缘气动装置的效率:YF-23A必须使用更大的襟翼下偏角来保证增升效果,但这又增大了机翼上表面附面层分离趋势,不但增大了附面层控制难度,也反过来降低了增升效果另一方面,YF-23A的副翼效率也不佳,导致其滚转率不能满足要求,而这最终影响到了竞争试飞的结果。就机翼的特点来看,诺斯罗普的考虑优先顺序首先是隐身,其次是超音速和续航能力,最后才是机动性和敏捷性。为改善机翼升力特性,YF-23A采用了前缘机动襟翼设计,其展长约占2/3翼展。有资料称该机采用的是缝翼设计,但在YF-23A试飞照片上看不出缝翼的特征。而且从隐身角度考虑,当缝翼伸出时,形成的狭缝将成为电磁波的良好反射体,这对于诺斯罗普来说是绝对不能接受的。事实上,前缘襟翼对飞机的隐身特性仍然有不利影响。最好的解决手段是在AFTI/F-111上验证的任务自适应机翼技术,可以避免机翼表面的不连续和开缝,不过遗憾的是直至今天这一技术仍未投入实用。对此,YF-22A采用了从F-117上继承来的菱形槽设计,使得襟翼偏转时该处成为低雷达反射区。而极力追求隐身的YF-23A竟然不考虑这个细节,唯一的解释就是在该机的典型作战状态(超巡)时,机翼为对称翼型,不需要偏转襟翼。
位于YF-23A机翼后缘的气动操纵面设计相当有特色,可算是YF-23A的亮点。有的资料称,机翼内侧为襟翼,外侧则是副翼,但实际情况远非这么简单。简单的襟翼、副翼之分,并不符合诺斯罗普在YF-23A上体现出来的“一物多用”的设计思想。就YF-23A的试飞照片来看,内、外侧控制面均有参与增升和滚转控制。因此笔者将其定位为“多用途襟副翼”。之所以说“多用途”,是因为这两对控制面除了传统襟副其的功能外,还兼有减速板和阻力方向舵的作甩当内侧襟副翼同时下偏,外侧襟副冀同时上偏,在保证机翼不产生额外升力增量的同时,产生对称气动阻力,起到减速板的作用;当只有一侧襟副翼采用上/下偏时,则产生小对称阻力,起到阻力方向舵的作用――这肯定是从B-2的设计继承发展而来的。这种设计相当新颖,有效地减轻了重量,但飞控系统的复杂性和研制风险则不可避免地增大了。
尾翼 V形尾翼设计并非诺斯罗普首创。1956年法国C.M.175教练机就采用了V形尾翼。洛克希德的F-117A也是如此(不过比较特殊,只提供方向控制)。但在强调机动性的未来战机上采用V形尾翼设计,YF-23A是第一个。YF-23A的v形尾翼设计相当独特。为了保证4波瓣雷达反射特性,平尾前后缘在水平面内的投影分别和机翼前后缘平行。这使得该机尾翼看起来相当巨大。考虑到大部分雷达反射发生在与水平面成±30度的范围内,YF-23A采用了将尾翼外倾40度的设计,以确保雷达波不会被反射回接收机,但相应的尾翼效率也降低了。相比之下,YF-22A采用91、倾27度的设计,处F隐身设计的边缘,属于隐身和机动综合权衡的结果。按照公开的说法,YF-23A出于大迎角机动性的要求,其尾翼采用宽间距布置,完全避开了边条和机翼内侧涡流,因此改善了剧烈机动状态下俯仰、滚转和偏航控制。就隐身而言,YF-23A的尾翼设计显然是成功的,但其气动效率却不免令人担、心。偏航、俯仰、滚转,二轴控制全部包揽。一物多用固然好,但重要却往往被人忽略的一点是:尾翼的总控制能力是有限的,某个轴占用较多的控制能力,必然会削弱其它轴的控制能力。当飞机陷于比较复杂的状态时,YF-23A的尾翼未必能兼顾。看看后来F一22的过失速试飞情况就知道了,操纵面的控制负荷是相当重的,而且还要加上推力矢量控制才行。当然,换个角度想,可能诺斯罗普压根儿就没有考虑超火迎角飞行的控制问题。能够保证大迎角范围内不出现气动发散的情况(诺斯罗普称,风洞数据显示YF-23A可以在所有迎角范围内稳定飞行,但YF-23A的试飞迎角最终也没有超过25度),是诺斯罗普在这方面所作的极限了。毕竟机动性并小是YF-23A的第一优先目标,过失速机动性就更不用说了。
飞控系统和推力矢量控制 随控布局经过长期验证在ATF设计阶段已经相当成熟。YF-23A应用随控布局技术、为此采用电传飞控系统并不令人意外。不过由于最终竞争失败,外界对该机的飞控系统细节了解极少。 前面已经提到,YF-23A在设计上具有鲜明的“一物多用”的特色。由于减少了操纵面和相应的控制机构,有助于飞机减轻重量和减小阻力,对于改善飞机隐身特性也是相当有利的。但除了操纵面负荷问题外,这种设计必然面临的一个考验就是飞控系统的复杂化。固然,在已经成功的B-2上也可以见到类似的设计,不过必须看到的是,对于不需要进行复杂机动的轰炸机而占,这种一物多用的设计问题不大;然而战斗机即使在常规条件下的机动,其操纵面的偏转控制也是相当复杂的,一物多用的设计必然会加大飞控系统的复杂程度和研制风险。如果还要考虑超常规飞行的话,飞控系统的设计难度可想而知。飞控软件的编制是飞控系统设计难点之一。自电传飞控系统实用化以来,大多数一流战机都在这上面栽过跟头。日,YF-22A因为飞控软件问题造成“飞行员诱发振荡”,撞地损毁。后来F一22试飞阶段还不断对飞控软件进行改进升级。连基本按照常规设计的YF-22A飞控系统都有这么多麻烦,非常规设计的YF-23A飞控系统就更难说。在对设计风险的判断上,美国空军还是比较准确的。如果YF-23A采用了推力矢量控制系统,一物多用带来的控制面负荷问题町能会得到缓解,对改善机动性和敏捷性也有好处。但诺斯罗普最终放弃了推力矢量,以确保其首要目标――隐身能力。因为如要应用推力矢量控制技术,就必须更改后机身设计,不仅增大了飞机重量,也导致飞机雷达反射截面积(主要是后向)增大和红外隐身能力下降――因为必须取消那个沟槽式尾喷口设计。这并不符合诺斯罗普的设计思想。
进/排气系统 进气道和发动机一级压气机是喷气机前方雷达反射截面积的主要来源,设计稍有不慎即可导致为隐身所作的努力全数付诸东流。通常在中、高空飞行的飞机,如F-117、B-2,其主要威胁来自下方,因此可将进气道和喷管置于机体上表面,以机身遮挡主要雷达反射特征。但对于制空战斗机而言,这一威胁定律显然不适用。如果住所有方向上的威胁具有同等可能性,在这种情况下依据什么原则来设计飞机呢?并没有一个人人满意的答案。从YF-23A的设计来看,在没有适用的隐身规则的情况下,其进气道设计选择了遵循机动性和进气要求。
发动机进气道是一个空腔结构,本身就是良好的雷达波反射体。而发动机一级压气机高速旋转的叶片不仅是强反射源,其反射波频谱甚至足以成为飞机型号的识别特征。要解决隐身问题,就必须首先解决这两个麻烦。解决途径之一是遮挡。F-111、幻影那种三元进气道,其激波锥可以在一定程度上遮蔽进气道内部和压气机的反射波,但问题是激波锥本身就是一个强雷达散射源。另一个也是更常采用的途径是S形进气道,并在进气道内敷设吸波材料。不过S形进气道并不是想象中那么简单,设计不当可能导致严重的总压损失。没有大量的验证,设计时少不了要吃苦头的。YF-23A的进气口位于机翼下方靠近前缘的位置,类似苏-27的设计,这显然是处于大迎角条件下进气要求的考虑。其横截面为梯形,除了垂直面上的斜切结构外,在水下面上也略有斜切,可以起到改善大迎角和侧滑条件下进气效率的作用。在进气口前方,设计有多孔式附面层吸除装置(机翼下表面未喷漆区域),并经机翼上表面排出一一由于进气口靠近机翼前缘,附面层厚度不大,因此不需要采用大型的附面层隔道,有助于减小雷达反射特征。在发动机舱卜表面还设计有辅助进气门(位于附面层排放狭缝旁边的带锯齿后缘的梯形板),用于在起降和低速状态下满足发动机的进气需要。根据隐身原则,进气道自进气口开始向内、向上弯曲,从正前方根本不可能看到压气机叶片,可获得较好隐身效果。此外,YF-23A采用了固定式进气道设计,以避免可调式进气道的调节斜板之间的缝隙和台阶产生的雷达反射。压缩斜板为二波系设计,并按照YF-23A的预计巡航速度作了优化。
YF-23A的发动机喷口设计带有明显的B-2风格。沟槽状喷口位于V形尾翼之间扁平的“海狸尾巴”上,以耐热材料作为衬垫。喷口顶端铰接一块无边形调节板,用于调节喷口大小。在海狸尾巴、V形尾翼、沟槽侧壁的屏蔽下,来自燃烧室的热喷流在沟槽段与冷空气混合降温(二元矩形喷口使得喷流更容易与周围空气混合),然后再排出机外,红外特征较之常规战斗机明显降低。除了隐身作用外,笔者推测,YF-23A的喷口设计可能还具有引射增升的作用,V形尾翼则起到了类似端板、增强增升效应的作用。不过这一推测没有获得资料证实。
发动机 发动机是飞机的核心部件,YF-23A的优越性能很大程度是建立在YF-119/120的巨大推力基础上的。超巡能力和跨战区航程对发动机提出了极为严苛的要求。为满足性能要求,需要采用具有中等增压比的高压压气机、较大增压比的低压压气机、较高的涡轮前温度和较大的非加力状态推力。 为满足不加力推力的要求,通用电气选择了变循环技术。其YF-120发动机上使用了一种特殊的可变面积外涵道引射器,通过控制内、外涵道空气流量来改变涵道比。在超音速巡航状态下,YF-120以接近涡喷发动机的方式工作(涵道比接近0),只有少量外涵道引气用于冷却;亚音速飞行时,YF-120以涡扇发动机的方式上作(最大涵道比约0.3)。YF-120为双转子方案,采用同轴反转技术,两级低压压气机,高/低压涡轮均只有一级。采用三余度数字式发动机控制组件。和F-100比,其零件数量少了40%。而YF-120的军用推力高达125千牛,甚至超过早期F-100的加力推力。
普?惠则选择了相对保守的涡扇发动机方案,当然在设计卜有明显进步,使得YF-119即使不采用变循环技术也可以满足JAFE的要求。YF-119也是双转子方案,3级低压压气机,6级高压压气机,高/低压涡轮各一级。其不加力推力明显比YF-120要低,只有97.9千牛。有意思的足,第一种实用的变循环发动机J-58(用于SR-71)正是普?惠在50年代研制了。对于为何放弃自己首创技术,普?惠方面并没有任何解释。后来通用电气承认,YF120的技术有些超前了,风险确实比YF119要高。
武器系统由于ATF暂时放弃了对地攻击能力的要求,因此在YF-23A的备选武器上并没有对地攻击武器。当初为ATF准备的主要对空武器是先进中距空空导弹(AMRAAM,后来的AIM-120)和先进近距空空导弹(ASRAAM,后来的AIM-132)。由于AIM-132进度严重拖延,迫使美国空军以先进响尾蛇改型(即AIM-9X)作为应急措施。今天,AIM-9X和AIM-120已经成为F/A-22的主要武器。YF-23A继承了诺斯罗普最初方案的内部武器舱设计。格斗导弹舱和主武器舱串列布置于前机身内。格斗导弹舱较小,只能容纳2枚AIM-9导弹。主武器舱较大,可容纳4枚AIM-120导弹。载弹量和YF-22A相同。由于AIM-120改进后弹翼缩小,因此在F/A-22的主武器舱内可容纳6枚。但YF-23A布置AIM-120A的方式就是上下前后错置排列,和YF-22A对称排列不同,显示其主武器舱尺寸可能较小,因此不一定能放得下6枚AIM-120改型。有资料提及,YF-23A的主武器舱挂架是可以升降的。需要发射AIM-120时,挂架伸出机外,将导弹置于自由流中再点火发射。此方式和YF-22A的弹射发射方式不同,完全避免了导弹在穿越机身表面气流时状态发生异常改变的可能性。当然,重量和机内容积的代价是免不了的。
没有资料提及在YF-23A上AIM-9的锁定/发射模式。但这其实是一个很有意思的问题。因为在封闭的导弹舱内,AIM-9的导引头是不可能捕获目标的。就这个问题,笔者和许多同好曾经进行了讨论,反复观看F-22武器系统试验的录像,最终形成较一致的看法:F-22在格斗状态下,格斗导弹舱处于开舱状态,将AIM-9X伸出,以解决导引头锁定问题。YF-23A完全可能采刖类似模式。结合AIM-120的发射模式,笔者推测:挂载AIM-9的可能也是升降式挂架,格斗状态下开舱门将AIM-9伸出机外。由于完全伸出机外,没有机身侧面屏蔽,AIM-9可以获得比在YF-22A上更好的视界,而且也不需要YF-22A上面的隔热/排焰装置。开舱状态可能会给人比较怪异的感觉,但事实上开舱门伸出导弹所带来的阻力并不会比传统外挂架的阻力更大,因此不会对飞机性能有太大的负面影响。这种模式唯一的问题在于格斗状态下飞机的雷达反射截面积会明显增大。不过?来在进入视距内空战的情况下雷达隐身意义不大;二来现代空战格斗时间明显缩短,开舱射击暴露时间有限,因此不至于对YF-23A构成严重威胁。对于ATF,特别是YF-23A这利飞机来说,不进入格斗才是最佳战术。除了空空导弹外,M61火神航炮仍然将作为ATF的固定武器。YF-23A上并没有安装M61,但按照设计方案,航炮将安装在机身右侧,主武器舱上方。 可维护性设计?维护口盖?舱门ATF是第一种在设计之初就提出可维护性指标的作战飞机,也是第一种在设计阶段就邀请机务部门参与的战斗机。美国空军如此重视可维护性,很大程度上是受F-15A的影响――F-15A刚刚服役时,故障层出不穷,飞机频频趴窝,人称“机库皇后”。对于传统飞机来说,维护口盖在机身表面的覆盖率是衡量其可维护性的一个重要参考指标。覆盖率高,意味着机载设备可按近性好,机务人员不必将时间消耗在无用但必需的工作上――最典型的就是为了接近设备A,必须先拆下设备B、C、D…;处理完后再按相反顺序装回去,而B、C、D其实对于A的维护毫无意义。但是,对于隐身飞机来说,情况完全不同。表面波的存在,使得机身表面任何开口都可能严重破坏飞机隐身特性。
因此,“非必要绝不在机身表面开口”是隐身飞机设计必循的原则。在这种情况下如何改善飞机的可维护性呢?途径之一是集中处理。不再是哪里有需要接近的设备就在哪里开设维护口盖,而是确定一个集中区域,将接近最频繁、维护量最大的设备全部集中到那里,以一个大的维护口盖来解决。途径二是建立在途径一基础上的,即尽量利用飞机必需设置无法省略的舱门作为维护口盖。例如武器舱、起落架舱。如果能将需要维护的设备或接口集中到这些舱内,甚至可能不必在机身表面再开其它维护口盖。为保证反射波束的.致性,飞机表面所有口盖羔、舱门都必须采用锯齿状设计,其锯齿前缘在水平面的投影应平行于飞机主要的反射边缘。不过,和通常想象的不同,多锯齿前缘设计并不是最佳的控制雷达反射措施。这种设计实际卜是隐身和重量要求折巾的结果。就隐身的角度来看,最理想的是单一锯齿设计。但为了保证单一锯齿的结构强度,必须要付出相应的重量代价。在ATF的严格重量要才下,YF-23A和YF-22A均采用了多锯齿设计。然而在后来的F-22上,我们可以毛到,经过空军同意,该机减少了锯齿数量,以改善隐身特性。
  ▲简单评价总的来看,YF-23A是这样一种飞机相对第三代战斗机上了一个台阶的常规机动性是它设计的基础,然而这也是诺斯罗普在这方面所作的极限。在80年代中后期出现的敏捷性、过失速机动性等新概念,在YF-23A的设计中基本没有考虑。它的设计重点放在隐身和超巡方面。由于之前赢得TATB计划合约,使得诺斯罗普在隐身飞机设计上显得踌躇满志。强调YF-23A的隐身能力,有利于发挥诺斯罗普的技术特长,从效费比的观点来看,把B-2的隐身技术运用到YF-23A上也是合理的。强调超巡能力,则应该是属于诺斯罗普对未来空战要求的判断。这样的设计思想,使得YF-23A在性能上呈现出一种“平均水平上有重点突出”的特点,特别是和YF-22A相比更是如此。在笔者看来,YF-23A的设计思想更接近于当年百系列战斗机中“截击/轰炸机”的慨念,而有悖于诺斯罗普传统的均衡设计思想。这种突然转变是颇为令人瞩目和惊讶的。
均衡设计的战斗机长期竞争失利(虽然失利根本原因并不在此)和ATB计划的成功,可能是促使诺斯罗普改变其传统设计思想的重要因素。加上诺斯罗普对机动性、速度、隐身重要性的认识,最终形成了我们所看到的YF-23A。
解放军军机:
&上一页: ?下一页:}

我要回帖

更多关于 战斗机与攻击机的区别 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信